Markov Games as a Framework for Multi-Agent Reinforcement Learning
نویسنده
چکیده
In the Markov decision process (MDP) formalization of reinforcement learning, a single adaptive agent interacts with an environment defined by a probabilistic transition function. In this solipsistic view, secondary agents can only be part of the environment and are therefore fixed in their behavior. The framework of Markov games allows us to widen this view to include multiple adaptive agents with interacting or competing goals. This paper considers a step in this direction in which exactly two agents with diametrically opposed goals share an environment. It describes a Q-learning-like algorithm for finding optimal policies and demonstrates its application to a simple two-player game in which the optimal policy is probabilistic.
منابع مشابه
Utilizing Generalized Learning Automata for Finding Optimal Policies in MMDPs
Multi agent Markov decision processes (MMDPs), as the generalization of Markov decision processes to the multi agent case, have long been used for modeling multi agent system and are used as a suitable framework for Multi agent Reinforcement Learning. In this paper, a generalized learning automata based algorithm for finding optimal policies in MMDP is proposed. In the proposed algorithm, MMDP ...
متن کاملMultiagent Reinforcement Learning in Stochastic Games
We adopt stochastic games as a general framework for dynamic noncooperative systems. This framework provides a way of describing the dynamic interactions of agents in terms of individuals' Markov decision processes. By studying this framework, we go beyond the common practice in the study of learning in games, which primarily focus on repeated games or extensive-form games. For stochastic games...
متن کاملQL 2 , a simple reinforcement learning scheme for two - player zero - sum
Markov games is a framework which can be used to formalise n-agent reinforcement learning (RL). Littman (Markov games as a framework for multi-agent reinforcement learning, in: Proceedings of the 11th International Conference on Machine Learning (ICML-94), 1994.) uses this framework to model two-agent zero-sum problems and, within this context, proposes the minimax-Q algorithm. This paper revie...
متن کاملMarkov Games of Incomplete Information for Multi-Agent Reinforcement Learning
Partially observable stochastic games (POSGs) are an attractive model for many multi-agent domains, but are computationally extremely difficult to solve. We present a new model, Markov games of incomplete information (MGII) which imposes a mild restriction on POSGs while overcoming their primary computational bottleneck. Finally we show how to convert a MGII into a continuous but bounded fully ...
متن کاملLearning in Markov Games with Incomplete Information
The Markov game (also called stochastic game (Filar & Vrieze 1997)) has been adopted as a theoretical framework for multiagent reinforcement learning (Littman 1994). In a Markov game, there are n agents, each facing a Markov decision process (MDP). All agents’ MDPs are correlated through their reward functions and the state transition function. As Markov decision process provides a theoretical ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1994